A First Look at Docker Application Package “docker-app”

Estimated Reading Time: 9 minutes

 

Did you know? There are more than 300,000 Docker Compose files on GitHub.

Docker Compose is a tool for defining and running multi-container Docker applications. It  is an amazing developer tool to create the development environment for your application stack. It allows you to define each component of your application following a clear and simple syntax in YAML files. It works in all environments: production, staging, development, testing, as well as CI workflows. Though Compose files are easy to describe a set of related services but there are couple of problems which has emerged in the past. One of the major concern has been around multiple environments to deploy the application with small configuration differences.

Consider a scenario where you have separate development, test, and production environments for your Web application. Under development environment, your team might be spending time in building up Web application(say, WordPress), developing WP Plugins and templates, debugging the issue etc.  When you are in development you’ll probably want to check your code changes in real-time. The usual way to do this is mounting a volume with your source code in the container that has the runtime of your application. But for production this works differently. Before you host your web application in production environment, you might want to turn-off the debug mode and host it under the right port so as to test your application usability and accessibility. In production you have a cluster with multiple nodes, and in most of the case volume is local to the node where your container (or service) is running, then you cannot mount the source code without complex stuff that involve code synchronization, signals, etc. In nutshell, this might require multiple Docker compose files for each environment and as your number of service applications increases, it becomes more cumbersome to manage those pieces of Compose files. Hence, we need a tool which can ease the way Compose files can be shareable across  different environment seamlessly.

To solve this problem, Docker, Inc recently announced a new tool called “docker-app”(Application Packages) which makes “Compose files more reusable and shareable”. This tool not only makes Compose file shareable but provide us with simplified approach to share multi-service application (not just Docker Image) directly on Dockerhub.

 

 

Under this blog post, I will showcase how docker-app tool makes it easier to use Docker Compose for sharing and collaboration and then pushing it directly to DockerHub. Let us get started-

Prerequisite:

  • Click on Icon near to Instance to choose 3 Managers & 2 Worker Nodes

Deploy 5 Node Swarm Mode Cluster

$ docker node ls
ID                            HOSTNAME            STATUS              AVAILABILITY        MANAGER STATUS      ENGINE VERSION
juld0kwbajyn11gx3bon9bsct *   manager1            Ready               Active              Leader              18.03.1-ce
uu675q2209xotom4vys0el5jw     manager2            Ready               Active              Reachable           18.03.1-ce
05jewa2brfkvgzklpvlze01rr     manager3            Ready               Active              Reachable           18.03.1-ce
n3frm1rv4gn93his3511llm6r     worker1             Ready               Active                                  18.03.1-ce
50vsx5nvwx5rbkxob2ua1c6dr     worker2             Ready               Active                                  18.03.1-ce

Cloning the Repository

$ git clone https://github.com/ajeetraina/app
Cloning into 'app'...remote: Counting objects: 14147, done.
remote: Total 14147 (delta 0), reused 0 (delta 0), pack-reused 14147Receiving objects: 100% (14147/14147), 17.32 MiB | 18.43 MiB/s, done.
Resolving deltas: 100% (5152/5152), done.

Installing docker-app

wget https://github.com/docker/app/releases/download/v0.3.0/docker-app-linux.tar.gz
tar xf docker-app-linux.tar.gz
cp docker-app-linux /usr/local/bin/docker-app

OR

$ ./install.sh
Connecting to github.com (192.30.253.112:443)
Connecting to github-production-release-asset-2e65be.s3.amazonaws.com (52.216.227.152:443)
docker-app-linux.tar 100% |**************************************************************|  8780k  0:00:00 ETA
[manager1] (local) root@192.168.0.13 ~/app
$ 

Verify docker-app version

$ docker-app version
Version:      v0.3.0
Git commit:   fba6a09
Built:        Fri Jun 29 13:09:30 2018
OS/Arch:      linux/amd64
Experimental: off
Renderers:    none

The docker-app tool comes with various options as shown below:

$ docker-app
Build and deploy Docker applications.

Usage:
  docker-app [command]

Available Commands:
  deploy      Deploy or update an application
  helm        Generate a Helm chart
  help        Help about any command
  init        Start building a Docker application
  inspect     Shows metadata and settings for a given application
  ls          List applications.
  merge       Merge the application as a single file multi-document YAML
  push        Push the application to a registry
  render      Render the Compose file for the application
  save        Save the application as an image to the docker daemon(in preparation for push)
  split       Split a single-file application into multiple files
  version     Print version information

Flags:
      --debug   Enable debug mode
  -h, --help    help for docker-app

Use "docker-app [command] --help" for more information about a command.
[manager1] (local) root@192.168.0.48 ~/app

WordPress Application under dev & Prod environment

If you browse to app/examples/wordpress directory under GitHub Repo, you will see that there is a folder called wordpress.dockerapp that contains three YAML documents:

  • metadatas
  • the Compose file
  • settings for your application

Okay, Fine ! But how you created those files?

The docker-app tool comes with an option “init” which initialize any application with the above  3 YAML files and the directory structure can be initialized with the below command:

docker-app init --single-file wordpress

I have already created a directory structure for my environment and you can find few examples under this directory.

Listing the WordPress Application package related files/directories

$ ls
README.md            install-wp           with-secrets.yml
devel                prod                 wordpress.dockerapp

As you see above, I have created each folder for my environment – dev and prod. Under these directories, I have created prod-settings.yml and dev-settings.yml. You can view the content via this link.

WordPress Application Package for Dev Environ

I can pass “-f” <YAML> parameter to docker-app tool to render the respective environment settings seamlessly as shown below:

$ docker-app render wordpress -f devel/dev-settings.yml
version: "3.6"
services:
  mysql:
    deploy:
      mode: replicated
      replicas: 1
      endpoint_mode: dnsrr
    environment:
      MYSQL_DATABASE: wordpressdata
      MYSQL_PASSWORD: wordpress
      MYSQL_ROOT_PASSWORD: wordpress101
      MYSQL_USER: wordpress
    image: mysql:5.6
    networks:
      overlay: null
    volumes:
    - type: volume
      source: db_data
      target: /var/lib/mysql
  wordpress:
    depends_on:
    - mysql
    deploy:
      mode: replicated
      replicas: 1
      endpoint_mode: vip
    environment:
      WORDPRESS_DB_HOST: mysql
      WORDPRESS_DB_NAME: wordpressdata
      WORDPRESS_DB_PASSWORD: wordpress
      WORDPRESS_DB_USER: wordpress
      WORDPRESS_DEBUG: "true"
    image: wordpress
    networks:
      overlay: null
    ports:
    - mode: ingress
      target: 80
      published: 8082
      protocol: tcp
networks:
  overlay: {}
volumes:
  db_data:
    name: db_data

WordPress Application Package for Prod

Under Prod environment, I have the following content under prod/prod-settings.yml as shown :

debug: false
wordpress:
  port: 80

For production environment, it is obvious that I want my application to be exposed under the standard port:80. Post rendering, you should be able to see port:80 exposed as shown below in the snippet:

 image: wordpress
    networks:
      overlay: null
    ports:
    - mode: ingress
      target: 80
      published: 80
      protocol: tcp
networks:
  overlay: {}
volumes:
  db_data:
    name: db_data

 

Inspect the WordPress App

$ docker-app inspect wordpress
wordpress 1.0.0
Maintained by: ajeetraina <ajeetraina@gmail.com>

Welcome to Collabnix

Setting                       Default
-------                       -------
debug                         true
mysql.database                wordpressdata
mysql.image.version           5.6
mysql.rootpass                wordpress101
mysql.scale.endpoint_mode     dnsrr
mysql.scale.mode              replicated
mysql.scale.replicas          1
mysql.user.name               wordpress
mysql.user.password           wordpress
volumes.db_data.name          db_data
wordpress.port                8081
wordpress.scale.endpoint_mode vip
wordpress.scale.mode          replicated
wordpress.scale.replicas      1
[manager1] (local) root@192.168.0.13 ~/app/examples/wordpress
$

Deploying the WordPress App

$ docker-app deploy wordpress
Creating network wordpress_overlay
Creating service wordpress_mysql
Creating service wordpress_wordpress

Switching to Dev Environ

If I want to switch back to Dev environment, all I need is to pass the dev specific YAML file using “-f” parameter  as shown below:

$docker-app deploy wordpress -f devel/dev-settings.yml

docker-app

Switching to Prod Environ

$docker-app deploy wordpress -f prod/prod-settings.yml

docker-app

[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$ docker-app deploy -f devel/dev-settings.yml
Updating service wordpress_wordpress (id: l95b4s6xi7q5mg7vj26lhzslb)
Updating service wordpress_mysql (id: lhr4h2uaer861zz1b04pst5sh)
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$ docker-app deploy -f prod/prod-settings.yml
Updating service wordpress_wordpress (id: l95b4s6xi7q5mg7vj26lhzslb)
Updating service wordpress_mysql (id: lhr4h2uaer861zz1b04pst5sh)
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$

Pushing Application Package to Dockerhub

So I have my application ready to be pushed to Dockerhub. Yes, you heard it right. I said, Application packages and NOT Docker Image.

Let me first authenticate myself before I push it to Dockerhub registry:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID, head over to
 https://hub.docker.com to create one.
Username: ajeetraina
Password:
Login Succeeded
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$

Saving this Application Package as Docker Image

The docker-app CLI is feature-rich and allows to save the entire application as a Docker Image. Let’s try it out –

[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$ docker-app save wordpress
Saved application as image: wordpress.dockerapp:1.0.0
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$

Listing out the images

$ docker images
REPOSITORY            TAG                 IMAGE ID            CREATED             SIZE
wordpress.dockerapp   1.0.0               c1ec4d18c16c        47 seconds ago      1.62kB
mysql                 5.6                 97fdbdd65c6a        3 days ago          256MB
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$

Listing out the services

$ docker stack services wordpress
ID                  NAME                  MODE                REPLICAS            IMAGE               PORTS
l95b4s6xi7q5        wordpress_wordpress   replicated          1/1                 wordpress:latest    *:80->80
/tcp
lhr4h2uaer86        wordpress_mysql       replicated          1/1                 mysql:5.6
[manager1] (local) root@192.168.0.48 ~/docker101/play-with-docker/visualizer

Using docker-app ls command to list out the application packages

The ‘ls’ command has been recently introduced under v0.3.0. Let us try it once –

$ docker-app ls
REPOSITORY            TAG                 IMAGE ID            CREATED              SIZE
wordpress.dockerapp   1.0.1               299fb78857cb        About a minute ago   1.62kB
wordpress.dockerapp   1.0.0               c1ec4d18c16c        16 minutes ago       1.62kB

Pusing it to Dockerhub

$ docker-app push --namespace ajeetraina --tag 1.0.1
The push refers to repository [docker.io/ajeetraina/wordpress.dockerapp]
51cfe2cfc2a8: Pushed
1.0.1: digest: sha256:14145fc6e743f09f92177a372b4a4851796ab6b8dc8fe49a0882fc5b5c1be4f9 size: 524

Say, you built WordPress application package and pushed it to Dockerhub. Now one of your colleague want to pull it on his development system and deploy in his environment.

Pulling it from Dockerhub

$ docker pull ajeetraina/wordpress.dockerapp:1.0.1
1.0.1: Pulling from ajeetraina/wordpress.dockerapp
a59931d48895: Pull complete
Digest: sha256:14145fc6e743f09f92177a372b4a4851796ab6b8dc8fe49a0882fc5b5c1be4f9
Status: Downloaded newer image for ajeetraina/wordpress.dockerapp:1.0.1
[manager3] (local) root@192.168.0.24 ~/app
$ docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
ajeetraina/wordpress.dockerapp   1.0.1               299fb78857cb        8 minutes ago       1.62kB
[manager3] (local) root@192.168.0.24 ~/app
$

Deploying the Application

$ docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
ajeetraina/wordpress.dockerapp   1.0.1               299fb78857cb        9 minutes ago       1.62kB
[manager3] (local) root@192.168.0.24 ~/app
$ docker-app deploy ajeetraina/wordpress
Creating network wordpress_overlay
Creating service wordpress_mysql
Creating service wordpress_wordpress
[manager3] (local) root@192.168.0.24 ~/app
$

Using docker-app merge option

Docker Team has introduced docker-app merge option under the new 0.3.0 release.

[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$ docker-app merge -o mywordpress
[manager1] (local) root@192.168.0.48 ~/app/examples/wordpress
$ ls
README.md            install-wp           prod                 wordpress.dockerapp
devel                mywordpress          with-secrets.yml
$ cat mywordpress
version: 1.0.1
name: wordpress
description: "Welcome to Collabnix"
maintainers:
  - name: ajeetraina
    email: ajeetraina@gmail.com
targets:
  swarm: true
  kubernetes: true

--
version: "3.6"

services:

  mysql:
    image: mysql:${mysql.image.version}
    environment:
      MYSQL_ROOT_PASSWORD: ${mysql.rootpass}
      MYSQL_DATABASE: ${mysql.database}
      MYSQL_USER: ${mysql.user.name}
      MYSQL_PASSWORD: ${mysql.user.password}
    volumes:
       - source: db_data
         target: /var/lib/mysql
         type: volume
    networks:
       - overlay
    deploy:
      mode: ${mysql.scale.mode}
      replicas: ${mysql.scale.replicas}
      endpoint_mode: ${mysql.scale.endpoint_mode}

  wordpress:
    image: wordpress
    environment:
      WORDPRESS_DB_USER: ${mysql.user.name}
      WORDPRESS_DB_PASSWORD: ${mysql.user.password}
      WORDPRESS_DB_NAME: ${mysql.database}
      WORDPRESS_DB_HOST: mysql
      WORDPRESS_DEBUG: ${debug}
    ports:
      - "${wordpress.port}:80"
    networks:
      - overlay
    deploy:
      mode: ${wordpress.scale.mode}
      replicas: ${wordpress.scale.replicas}
      endpoint_mode: ${wordpress.scale.endpoint_mode}
    depends_on:
      - mysql

volumes:
  db_data:
     name: ${volumes.db_data.name}

networks:
  overlay:

--
debug: true
mysql:
  image:
    version: 5.6
  rootpass: wordpress101
  database: wordpressdata
  user:
    name: wordpress
    password: wordpress
  scale:
    endpoint_mode: dnsrr
    mode: replicated
    replicas: 1
wordpress:
  scale:
    mode: replicated
    replicas: 1
    endpoint_mode: vip
  port: 8081
volumes:
  db_data:
    name: db_data

docker-app comes with a few other helpful commands as well, in particular the ability to create Helm Charts from your Docker Applications. This can be useful if you’re adopting Kubernetes, and standardising on Helm to manage the lifecycle of your application components, but want to maintain the simplicity of Compose when writing you applications. This also makes it easy to run the same applications locally just using Docker, if you don’t want to be running a full Kubernetes cluster.

Did you find this blog helpful?  Feel free to share your experience. Get in touch with me at twitter @ajeetsraina.

If you want to keep track of latest Docker related information, follow me at https://www.linkedin.com/in/ajeetsraina/.

Test Drive Elastic stack on PWD platform running Docker 17.06 CE Swarm Mode in 5 minutes

Estimated Reading Time: 6 minutes

Let’s talk about Dockerized Elastic Stack…

Elastic Stack is an open source solution that reliably and securely take data from any source, in any format, and search, analyze, and visualize it in real time. It is a collection of open source products – Elasticsearch, Logstash, Kibana & recently added  fourth product, called Beats. Elastic Stack can be deployed on premises or made available as Software as a Service.

Brief about Elastic Stack Components:

Elasticsearch:

Elasticsearch is a RESTful, distributed, highly scalable, JSON-based search and analytics engine built on top of Apache Lucene and released under Apache license. It is Java-based and designed for horizontal scalability, maximum reliability, and easy management. It is basically an open-source full-text search and analytics engine. It allows you to store, search, and analyze big volumes of data quickly and in near real time. It is generally used as the underlying engine/technology that powers applications that have complex search features and requirements.

                                                                                                                                              ~Source: https://www.elastic.co

Logstash:

Logstash is an open source, server-side data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to your favorite “stash.” (Elasticsearch). Logstash is a dynamic data collection pipeline with an extensible plugin ecosystem and strong Elasticsearch synergy. The product was originally optimized for log data but has expanded the scope to take data from all sources.Data is often scattered or siloed across many systems in many formats. Logstash supports a variety of inputs that pull in events from a multitude of common sources, all at the same time. Easily ingest from your logs, metrics, web applications, data stores, and various AWS services, all in continuous, streaming fashion.As data travels from source to store, Logstash filters parse each event, identify named fields to build structure, and transform them to converge on a common format for easier, accelerated analysis and business value.

Logstash dynamically transforms and prepare your data regardless of format or complexity:

  • Derive structure from unstructured data with grok
  • Decipher geo coordinates from IP addresses
  • Anonymize PII data, exclude sensitive fields completely
  • Ease overall processing independent of the data source, format, or schema.

Logstash has a pluggable framework featuring over 200 plugins. Mix, match, and orchestrate different inputs, filters, and outputs to work in pipeline harmony.

Kibana:

Lastly, Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack. It gives you the freedom to select the way you give shape to your data. And you don’t always have to know what you’re looking for. With its interactive visualizations, start with one question and see where it leads you.Kibana developer tools offer powerful ways to help developers interact with the Elastic Stack. With Console, you can bypass using curl from the terminal and tinker with your Elasticsearch data directly. The Search Profiler lets you easily see where time is spent during search requests. And authoring complex grok patterns in your Logstash configuration becomes a breeze with the Grok Debugger.

In next 5 minutes, we are going to test drive ELK stack on PWD playground.

Let’s get started –

Open up https://play-with-docker.com

 

Click on icon next to Instances to open up ready-made templates for Docker Swarm Mode:

 

Choose the first template (as highlighted in the above figure) to select 3 Managers and 2 Workers. It will bring up Docker 17.06 Swarm Mode cluster in just 10 seconds.

Run the below command to show up the cluster nodes:

docker node ls

Run the necessary command on node which will run elasticsearch:

sysctl -w vm.max_map_count=262144
echo ‘vm.max_map_count=262144’ >> /etc/sysctl.conf

Clone the GitHub repository:

git clone https://github.com/ajeetraina/docker101
cd docker101/play-with-docker/visualizer

Run the below command to bring up visualiser tool as shown below:

Soon you will notice port 8080 displayed on the top of the page which when clicked will open up visualiser tool.

It’s time to clone ELK stack and execute the below command to bring up ELK stack across Docker 17.06 Swarm Mode cluster:

git clone https://github.com/ajeetraina/swarm-elk
cd swarm-elk
docker stack deploy -c docker-compose.yml myself

 

[Credits to Andrew Hromis for building this docker-compose file. I leveraged his project repository to bring up the ELK stack in the first try]

You will soon see the below list of containers appearing on the nodes:

Run the below command to see the list of services running across the cluster:

docker service ls

Click on port 5601 displayed on the top of the PWD page:

Please Note:  Kibana need data in Elasticsearch to work with. The .kibana index holds Kibana related data, and if they is the only index you have there is no data available that Kibana can visualise.Before you can use Kibana you will therefore need to index some data into Elasticsearch. This can be done e.g. using Logstash or directly through the REST interface using curl.

Soon you will see the below Kibana page:

 

Enabling High Availability for Elastic Stack through scaling

Let us scale out more number of replicas for elasticsearch:

Pushing data into Logstash:

Example #1:

Let us push NGINX web server logs into logstash and see if Kibana is able to detect it:

docker run -d --name nginx-with-syslog --log-driver=syslog --log-opt syslog-address=udp://10.0.173.7:12201 -p 80:80 nginx:alpine

Now if you open up Kibana UI, you should be able to see logs being displayed for Nginx:

Example #2:

We can also push logs to logstash using the below command:

docker run --rm -it --log-driver=gelf --log-opt gelf-address=udp://10.0.173.7:12201 alpine ping 8.8.8.8

Open up Kibana and now you will see the below GREEN status:

Did you find this blog helpful?  Feel free to share your experience. Get in touch @ajeetsraina

If you are looking out for contribution/discussion, join me at Docker Community Slack Channel.

 

Docker 17.06 Swarm Mode: Now with built-in MacVLAN & Node-Local Networks support

Estimated Reading Time: 4 minutes

Docker 17.06.0-ce-RC5 got announced 5 days back and is available for testing. It brings numerous new features & enablements under this new upcoming release. Few of my favourites includes support for Secrets on Windows,  allows specifying a secret location within the container, adds --format option to docker system df command, adds support for placement preference to docker stack deploy, adds monitored resource type metadata for GCP logging driver and adding build & engine info prometheus metrics to list a few. But one of the notable and most awaited feature include support of swarm-mode services with node-local networks such as macvlan, ipvlan, bridge and host.

Under the new upcoming 17.06 release, Docker provides support for local scope networks in Swarm. This includes any local scope network driver. Some examples of these are bridgehost, and macvlan though any local scope network driver, built-in or plug-in, will work with Swarm. Previously only swarm scope networks like overlay were supported. This is a great news for all Docker Networking enthusiasts.

A Brief Intro to MacVLAN:

Picture1

 

macvlan

In case you’re new , the MACVLAN driver provides direct access between containers and the physical network. It also allows containers to receive routable IP addresses that are on the subnet of the physical network.

MACVLAN offers a number of unique features and capabilities. It has positive performance implications by virtue of having a very simple and lightweight architecture. It’s use cases includes very low latency applications and networking design that requires containers be on the same subnet as and using IPs as the external host network.The macvlan driver uses the concept of a parent interface. This interface can be a physical interface such as eth0, a sub-interface for 802.1q VLAN tagging like eth0.10 (.10representing VLAN 10), or even a bonded host adaptor which bundles two Ethernet interfaces into a single logical interface.

To test-drive MacVLAN under Swarm Mode, I will leverage the existing 3 node Swarm Mode clusters on my VMware ESXi system. I have tested it on bare metal system and VirtualBox and it works equally great.  

[Updated: 9/27/2017 – I have added docker-stack.yml at the end of this guide to show you how to build services out of docker-compose.yml file. DO NOT FORGET TO CHECK IT OUT]

Installing Docker 17.06 on all the Nodes:

curl -fsSL https://test.docker.com > install-docker.sh
sh install-docker.sh

 

Verifying the latest Docker version:

Screen Shot 2017-06-26 at 12.51.18 AM

 

Setting up 2 Node Swarm Mode Cluster:

 

 

Attention VirtualBox Users: – In case you are using VirtualBox,  the MACVLAN driver requires the network and interfaces to be in promiscuous mode. 

A local network config is created on each host. The config holds host-specific information, such as the subnet allocated for this host’s containers. --ip-range is used to specify a pool of IP addresses that is a subset of IPs from the subnet. This is one method of IPAM to guarantee unique IP allocations.

Manager:

manager1==>sudo docker network create --config-only --subnet 100.98.26.0/24 -o parent=ens160.60 --ip-range 100.98.26.100/24 collabnet

 

Worker-1:

worker1==>sudo docker network create --config-only --subnet 100.98.26.0/24 -o parent=ens160.60 --ip-range 100.98.26.100/24 collabnet

 

 

Instantiating the macvlan network globally

Manager:

manager1==> $sudo docker network create -d macvlan --scope swarm --config-from collabnet swarm-macvlan

 

Deploying a service to the swarm-macvlan network:

Let us go ahead and deploy WordPress application. We will be creating 2 services – wordpressapp and wordpressdb1 and attach it to “swarm-macvlan” network as shown below:

Creating Backend Service:

docker service create --replicas 1 --name wordpressdb1 --network swarm-macvlan --env MYSQL_ROOT_PASSWORD=collab123 --env MYSQL_DATABASE=wordpress mysql

Let us verify if MacVLAN network scope holds this container:

 

Creating Frontend Service

Next, it’s time to create wordpress application i.e. wordpressapp

docker service create --env WORDPRESS_DB_HOST=wordpressdb1 --env WORDPRESS_DB_PASSWORD=collab123 --network swarm-macvlan --replicas 4 --name wordpressapp --publish 80:80/tcp wordpress:latest

Verify if both the services are up and running:

 

Verifying if all the containers on the master node picks up desired IP address from the subnet:

 

Docker Compose File showcasing MacVLAN Configuration

Ensure that you run the below commands to setup MacVLAN configuration for your services before you execute the above docker stack deploy CLI:

root@ubuntu-1610:~# docker network create --config-only --subnet 100.98.26.0/24 --gateway 100.98.26.1 -o parent=ens160.60 --ip-range 100.98.26.120/24 collabnet
da2912d762cbf5f5ea412e6e4d69352a3285f720e23740529af9e533c7168729
 
root@ubuntu-1610:~#docker network create -d macvlan --scope swarm --config-from collabnet swarm-macvlan
jp76lts6hbbheqlbbhggumujd

 

Verify that the containers inspection shows the correct information:

root@ubuntu-1610:~/docker101/play-with-docker/wordpress/example1# docker network inspect swarm-macvlan
[
{
“Name”: “swarm-macvlan”,
“Id”: “jp76lts6hbbheqlbbhggumujd”,
“Created”: “2017-09-27T02:12:00.827562388-04:00”,
“Scope”: “swarm”,
“Driver”: “macvlan”,
“EnableIPv6”: false,
“IPAM”: {
“Driver”: “default”,
“Options”: null,
“Config”: [
{
“Subnet”: “100.98.26.0/24”,
“IPRange”: “100.98.26.120/24”,
“Gateway”: “100.98.26.1”
}
]
},
“Internal”: false,
“Attachable”: false,
“Ingress”: false,
“ConfigFrom”: {
“Network”: “collabnet”
},
“ConfigOnly”: false,
“Containers”: {
“3c3f1ec48225ef18e8879f3ebea37c2d0c1b139df131b87adf05dc4d0f4d8e3f”: {
“Name”: “myapp2_wordpress.1.nd2m62alxmpo2lyn079x0w9yv”,
“EndpointID”: “a15e96456870590588b3a2764da02b7f69a4e63c061dda2798abb7edfc5e5060”,
“MacAddress”: “02:42:64:62:1a:02”,
“IPv4Address”: “100.98.26.2/24”,
“IPv6Address”: “”
},
“d47d9ebc94b1aa378e73bb58b32707643eb7f1fff836ab0d290c8b4f024cee73”: {
“Name”: “myapp2_db.1.cxz3y1cg1m6urdwo1ixc4zin7”,
“EndpointID”: “201163c233fe385aa9bd8b84c9d6a263b18e42893176271c585df4772b0a2f8b”,
“MacAddress”: “02:42:64:62:1a:03”,
“IPv4Address”: “100.98.26.3/24”,
“IPv6Address”: “”
}
},
“Options”: {
“parent”: “ens160”
},
“Labels”: {},
“Peers”: [
{
“Name”: “ubuntu-1610-1633ea48e392”,
“IP”: “100.98.26.60”
}
]
}
]

Docker Stack Deploy CLI:

docker stack deploy -c docker-stack.yml myapp2
Ignoring unsupported options: restart
Creating service myapp2_db
Creating service myapp2_wordpress

Verifying if the services are up and running:

root@ubuntu-1610:~/# docker stack ls
NAME SERVICES
myapp2 2
root@ubuntu-1610:~/# docker stack ps myapp2
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
nd2m62alxmpo myapp2_wordpress.1 wordpress:latest ubuntu-1610 Running Running 15 minutes ago
cxz3y1cg1m6u myapp2_db.1 mysql:5.7 ubuntu-1610 Running Running 15 minutes ago

Looking for Docker Compose file for Single Node?

 

Cool..I am going to leverage this for my Apache JMeter Setup so that I can push loads from different IPs using Docker containers.

Did you find this blog helpful?  Feel free to share your experience. Get in touch @ajeetsraina

If you are looking out for contribution/discussion, join me at Docker Community Slack Channel.

Know more what’s new upcoming under Docker 17.06 CE release by clicking on this link.