Installing Helm to deploy Kubernetes Applications on Docker Enterprise 2.0 Made Easy

Estimated Reading Time: 11 minutes

 

 

Let’s talk about RBAC under Docker EE 2.0…

Kubernetes RBAC(Role-based Access Control) security context is a fundamental part of Kubernetes security best practices, as well as rolling out TLS certificates / PKI authentication for connecting to the Kubernetes API server and between its components. Kubernetes RBAC is essentially an authorization and access control specification where you define the actions (GET, UPDATE, DELETE, etc) that Kubernetes subjects (i.e. human users, software, kubelets) are allowed to perform over Kubernetes entities (i.e. pods, secrets, nodes).

 

 

 

Early this year, Docker EE 2.0 introduced an enhanced RBAC solution for the first time that provided flexible and granular access controls across multiple teams and users. Docker EE leverages the Kubernetes webhook authentication model. This feature enables the validation of all requests by an outside source. With Docker EE we use the control plane’s RBAC controller, eNZi. Each Kubernetes request, whether issued via the CLI or the GUI, is validated against Docker EE’s authN/authZ database, and then rejected or accepted as appropriate.

 

With Docker EE 2.0, UCP now includes an upstream distribution of Kubernetes. From a security point of view this is the best of both worlds. Out of the box Docker EE 2.0 provides user authentication and RBAC on top of Kubernetes. To ensure the Kubernetes orchestrator follows all the security best practices UCP utilizes TLS for the Kubernetes API port. When combined with UCP’s auth model, this allows for the same client bundle to talk to the Swarm or Kubernetes API.

Early this year, I wrote a blog post which deep-dive into Docker EE 2.0 Architecture. Check it out if you are new and want to get into nitty-gritty of Docker Enterprise product.

Under the Hood: Demystifying Docker Enterprise Edition 2.0 Architecture

Under this blog post, I will show you an insanely easy way to deploy Helm Package manager on 3-Node Kubernetes Cluster running Docker Enterprise 2.0.

Tested Infrastructure

Platform Google Cloud Platform
OS Instance Ubuntu 18.04
Machine Type n1-standard-4 (4 vCPUs, 15 GB memory)
No. of Nodes 3

I assume that you have 3 Ubuntu 18.04 instances having the above minimal configurations. Make sure all the hosts you want to manage with Docker EE have a minimum of:

  • Docker Enterprise Edition 17.06.2-ee-8. Values of n in the -ee- suffix must be 8 or higher
  • Linux kernel version 3.10 or higher
  • 4.00 GB of RAM
  • 3.00 GB of available disk space

 


Cloning the Repository

Login to the first Ubuntu 18.04 OS and run the below command to clone the repository.

git clone https://github.com/ajeetraina/docker101
cd docker101/docker-ee/ubuntu

 

Installing Docker EE

The best way to try Docker Enterprise Edition for yourself is to get the 30-day trial available at the Docker Store. Once you get your trial license, you can install Docker EE on your Linux servers.

As soon as you get 1 Month Trial Version of Docker EE, you will be provided with URL. Copy the section from URL starting from sub

https://storebits.docker.com/ee/ubuntu/sub-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx

Exporting URL

export eeid=sub-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx

Installing Docker EE

I have built a script for you to get Docker EE 2.0 up and running flawlessly. Just one command and Docker EE is all set.

sh bootstrap.sh provision_dockeree

Setting up UCP

Run the below command to initiate container which will setup UCP for you.

sudo sh bootstrap.sh provision_ucp
openusm@master01:~/test/docker101/docker-ee/ubuntu$ sudo sh bootstrap.sh provision_ucp
Unable to find image 'docker/ucp:3.0.5' locally
3.0.5: Pulling from docker/ucp
ff3a5c916c92: Pull complete 
a52011fa0ead: Pull complete 
87e35eb74a08: Pull complete 
Digest: sha256:c8a609209183561de7779e5d32abc5fd9125944c67e8daf262dcbb9f2b1e44ff
Status: Downloaded newer image for docker/ucp:3.0.5
INFO[0000] Your engine version 17.06.2-ee-16, build 9ef4f0a (4.15.0-1021-gcp) is compatible with UCP 3.0.5 (f588f8a) 
Admin Username: collabnix
Admin Password: 
Confirm Admin Password: 
INFO[0043] Pulling required images... (this may take a while) 
INFO[0043] Pulling docker/ucp-auth:3.0.5                
INFO[0049] Pulling docker/ucp-hyperkube:3.0.5           
INFO[0064] Pulling docker/ucp-etcd:3.0.5                
INFO[0070] Pulling docker/ucp-interlock-proxy:3.0.5     
INFO[0086] Pulling docker/ucp-agent:3.0.5               
INFO[0092] Pulling docker/ucp-kube-compose:3.0.5        
INFO[0097] Pulling docker/ucp-dsinfo:3.0.5              
INFO[0104] Pulling docker/ucp-cfssl:3.0.5               
INFO[0107] Pulling docker/ucp-kube-dns-sidecar:3.0.5    
INFO[0112] Pulling docker/ucp-interlock:3.0.5           
INFO[0115] Pulling docker/ucp-kube-dns:3.0.5            
INFO[0120] Pulling docker/ucp-controller:3.0.5          
INFO[0128] Pulling docker/ucp-pause:3.0.5               
INFO[0132] Pulling docker/ucp-calico-kube-controllers:3.0.5 
INFO[0136] Pulling docker/ucp-auth-store:3.0.5          
INFO[0142] Pulling docker/ucp-calico-cni:3.0.5          
INFO[0149] Pulling docker/ucp-calico-node:3.0.5         
INFO[0158] Pulling docker/ucp-kube-dns-dnsmasq-nanny:3.0.5 
INFO[0163] Pulling docker/ucp-compose:3.0.5             
INFO[0167] Pulling docker/ucp-swarm:3.0.5               
INFO[0173] Pulling docker/ucp-metrics:3.0.5             
INFO[0179] Pulling docker/ucp-interlock-extension:3.0.5 
WARN[0183] None of the hostnames we'll be using in the UCP certificates [master01 127.0.0.1 172.17.0.1 10.140.0.2] contain a domain component.  Your generated certs may fail TLS validation unless you only use one of these shortnames or IPs to connect.  You can use the --san flag to add more aliases 

You may enter additional aliases (SANs) now or press enter to proceed with the above list.
Additional aliases: 
INFO[0000] Initializing a new swarm at 10.140.0.2 
Additional aliases: 
INFO[0000] Initializing a new swarm at 10.140.0.2       
INFO[0009] Installing UCP with host address 10.140.0.2 - If this is incorrect, please specify an alternative address with the '--host-address' flag 
INFO[0009] Deploying UCP Service...                     
INFO[0068] Installation completed on master01 (node slsvy00m1khejbo5itmupk034) 
INFO[0068] UCP Instance ID: omz7lso0zpeyzk17gxubvz72r   
INFO[0068] UCP Server SSL: SHA-256 Fingerprint=24:9B:51:4E:E2:F1:CD:1B:DE:E0:86:0F:DC:E7:29:B5:1E:0E:6B:0C:BF:24:CC:27:85:91:35:A1:6A:39:37:C6 
INFO[0068] Login to UCP at https://10.140.0.2:443       
INFO[0068] Username: collabnix                          
INFO[0068] Password: (your admin password) 

Logging in Docker EE

By now, you should be able to login to Docker EE Window using browser. Upload the license and you should be good to see the UCP console.

Installing Kubectl

Undoubtedly, kubectl has been favourite command for K8s users. It works great but it’s painful because you use it to manually run a command for each resource in your Kubernetes application. This is prone to error, because we might forget to deploy one resource, or introduce a typo when writing our kubectl commands. As we add more parts to our application, the probability of these problems occurring increases.

But still here’s a bonus – Execute the below script if you really want to use kubectl on Docker EE Platform.

sudo sh bootstrap.sh install_kubectl

Verify Kubectl Version

@master01:~$ kubectl version
Client Version: version.Info{Major:"1", Minor:"8", GitVersion:"v1.8.11", GitCommit:"1df6a8381669a6c753f79cb31ca2e3d57ee7c8a3", GitTreeState:"clean", BuildDate:"2018-04-05T17:24:
03Z", GoVersion:"go1.8.3", Compiler:"gc", Platform:"linux/amd64"}
Server Version: version.Info{Major:"1", Minor:"8+", GitVersion:"v1.8.11-docker-8d637ae", GitCommit:"8d637aedf46b9c21dde723e29c645b9f27106fa5", GitTreeState:"clean", BuildDate:"2
018-04-26T16:51:21Z", GoVersion:"go1.8.3", Compiler:"gc", Platform:"linux/amd64"}

Verifying Docker Version

Here you go.. Docker EE 2.0 is all set up with Swarm & Kubernetes running side by side.

 docker version
Client: Docker Enterprise Edition (EE) 2.0
 Version:      17.06.2-ee-16
 API version:  1.30
 Go version:   go1.8.7
 Git commit:   9ef4f0a
 Built:        Thu Jul 26 16:41:28 2018
 OS/Arch:      linux/amd64
Server: Docker Enterprise Edition (EE) 2.0
 Engine:
  Version:      17.06.2-ee-16
  API version:  1.30 (minimum version 1.12)
  Go version:   go1.8.7
  Git commit:   9ef4f0a
  Built:        Thu Jul 26 16:40:18 2018
  OS/Arch:      linux/amd64
  Experimental: false
 Universal Control Plane:
  Version:       3.0.5
  ApiVersion:                   1.30
  Arch:                         amd64
  BuildTime:                    Thu Aug 30 17:47:03 UTC 2018
  GitCommit:                    f588f8a
  GoVersion:                    go1.9.4
  MinApiVersion:                1.20
  Os:                           linux
 Kubernetes:
  Version:      1.8+
  buildDate:                   2018-04-26T16:51:21Z
  compiler:                    gc
  gitCommit:                   8d637aedf46b9c21dde723e29c645b9f27106fa5
  gitTreeState:                clean
  gitVersion:                  v1.8.11-docker-8d637ae
  goVersion:                   go1.8.3
  major:                       1
  minor:                       8+
  platform:                    linux/amd64
 Calico:
  Version:          v3.0.8
  cni:                             v2.0.6
  kube-controllers:                v2.0.5
  node:                            v3.0.8

Verifying the Kubernetes Nodes

@master01:~/test/docker101/docker-ee/ubuntu$ kubectl get nodes
NAME       STATUS    ROLES     AGE       VERSION
master01   Ready     master    20m       v1.8.11-docker-8d637ae

Adding Worker Nodes

To add worker nodes, go to Add Nodes section under Docker Enterprise UI and click on “Add a Node”. It will display a command which need to be executed on worker nodes. This should be good to build multi-node Docker EE Swarm & Kubernetes Cluster

m@master01:~$ sudo docker node ls
ID                            HOSTNAME            STATUS              AVAILABILITY        MANAGER STATUS
av668en5dinpin5jpi6ro0yfs     worker01            Ready               Active              
k4grcnyl6vbf0z17bh67cz9l5     worker02            Ready               Active              
slsvy00m1khejbo5itmupk034 *   master01            Ready               Active              Leader

@master01:~$ kubectl get nodes
NAME       STATUS     ROLES     AGE       VERSION
master01   Ready      master    1h        v1.8.11-docker-8d637ae
worker01   NotReady   <none>    28s       v1.8.11-docker-8d637ae
worker02   Ready      <none>    3m        v1.8.11-docker-8d637ae
openusm@master01:~$ 

Downloading Client Bundle

In order to manage services using Docker CLI, one need to install client bundle and Docker Inc. provides an easy way to install it. I put it under the script “install-client-bundle” . All you need is to supply the correct username and password plus UCP URL to make it work.

 

Installing Helm

openusm@master01:~$ curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get > install-helm.sh
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  7230  100  7230    0     0  17173      0 --:--:-- --:--:-- --:--:-- 17132
openusm@master01:~$ chmod u+x install-helm.sh
openusm@master01:~$ ./install-helm.sh
Downloading https://kubernetes-helm.storage.googleapis.com/helm-v2.11.0-linux-amd64.tar.gz
Preparing to install helm and tiller into /usr/local/bin
helm installed into /usr/local/bin/helm
tiller installed into /usr/local/bin/tiller
Run 'helm init' to configure helm.
openusm@master01:~$ helm init
Creating /home/openusm/.helm 
Creating /home/openusm/.helm/repository 
Creating /home/openusm/.helm/repository/cache 
Creating /home/openusm/.helm/repository/local 
Creating /home/openusm/.helm/plugins 
Creating /home/openusm/.helm/starters 
Creating /home/openusm/.helm/cache/archive 
Creating /home/openusm/.helm/repository/repositories.yaml 
Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com 
Adding local repo with URL: http://127.0.0.1:8879/charts 
$HELM_HOME has been configured at /home/openusm/.helm.
Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.
Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy.
To prevent this, run `helm init` with the --tiller-tls-verify flag.
For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation
Happy Helming!
openusm@master01:~$

Verifying Helm Version

helm version
Client: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.11.0", GitCommit:"2e55dbe1fdb5fdb96b75ff144a339489417b146b", GitTreeState:"clean"}

Installing MYSQL using Helm

helm install --name mysql stable/mysql
Error: release mysql failed: namespaces "default" is forbidden: User "system:serviceaccount:kube-system:default" cannot get namespaces in the namespace "default": access denied

You will encounter the above error message and it is expected. This is caused by tiller not having the correct service account / permissions to install applications into the cluster.

Creating Service Account for Tiller

To create a service account for tiller and apply the correct grants, follow these steps:

Create the tiller service account:

openusm@master01:~$ kubectl create serviceaccount --namespace kube-system tiller
serviceaccount "tiller" created

 

In the UCP UI, navigate to the User Management > Grants menu and click  the Create button.In the Subject area, choose Service Account and select the kube-system Namespace and tiller Service Account; then hit Next:

 

In the Role area, select Full Control. Then hit Next. In the Resource area, select Namespaces, flip the switch to enable Apply grant to all existing and new namespaces, then hit Create:

 

 

Verify the final grant. It should look similar to what is shown below:

 

At this stage, if you have tiller installed in the cluster already, you will need to patch the tiller deployment to use the tiller service account just created:

$ kubectl patch deploy --namespace kube-system tiller-deploy -p '{"spec":{"template":{"spec":{"serviceAccount":"tiller"}}}}'

So before we can use helm with a kubernetes cluster, you need to install tiller on it. It’s as easy as running the below command:

openusm@master01:~$ helm init --service-account tiller
$HELM_HOME has been configured at /home/openusm/.helm.
Warning: Tiller is already installed in the cluster.
(Use --client-only to suppress this message, or --upgrade to upgrade Tiller to the current version.)
Happy Helming!

The above command installs Tiller (the Helm server-side component) onto your Kubernetes Cluster and sets up local configuration in $HELM_HOME (default ~/.helm/).As with the rest of the Helm commands, ‘helm init’ discovers Kubernetes clusters by reading $KUBECONFIG (default ‘~/.kube/config’) and using the default context.

We are good to go ahead and install a chart via helm install:

openusm@master01:~$ helm install --name mysql stable/mysql
NAME:   mysql
LAST DEPLOYED: Thu Oct 11 13:37:52 2018
NAMESPACE: default
STATUS: DEPLOYED
RESOURCES:
==> v1/Pod(related)
NAME                    READY  STATUS   RESTARTS  AGE
mysql-694696f6d5-w4j5n  0/1    Pending  0         1s
==> v1/Secret
NAME   AGE
mysql  1s
==> v1/ConfigMap
mysql-test  1s
==> v1/PersistentVolumeClaim
mysql  1s
==> v1/Service
mysql  1s
==> v1beta1/Deployment
mysql  1s
NOTES:
MySQL can be accessed via port 3306 on the following DNS name from within your cluster:
mysql.default.svc.cluster.local
To get your root password run:
    MYSQL_ROOT_PASSWORD=$(kubectl get secret --namespace default mysql -o jsonpath="{.data.mysql-root-password}" | base64 --decode; echo)
To connect to your database:
1. Run an Ubuntu pod that you can use as a client:
    kubectl run -i --tty ubuntu --image=ubuntu:16.04 --restart=Never -- bash -il
2. Install the mysql client:
    $ apt-get update && apt-get install mysql-client -y
3. Connect using the mysql cli, then provide your password:
    $ mysql -h mysql -p
To connect to your database directly from outside the K8s cluster:
    MYSQL_HOST=127.0.0.1
    MYSQL_PORT=3306
    # Execute the following command to route the connection:
    kubectl port-forward svc/mysql 3306
    mysql -h ${MYSQL_HOST} -P${MYSQL_PORT} -u root -p${MYSQL_ROOT_PASSWORD}
    

In my next blog post, I will showcase how to build IstioMesh on Docker Enterprise 2.0. Stay tuned !

If you’re interested in a fully conformant Kubernetes environment that is ready for the enterprise,    https://trial.docker.com/

Did you find this blog helpful? Feel free to share your experience. Get in touch with me on Twitter –  @ajeetsraina

If you are looking out for contribution, join me at Docker Community Slack Channel.

Clap