Managing Apache Kafka can be a daunting task, especially when it comes to setting up and configuring multiple components. However, with the power of Docker Compose and the simplicity of YAML configuration files, this seemingly complex process can be made effortless. In this article, we will explore how Docker Compose and YAML can work together to provide a cheerful guide for managing Apache Kafka effortlessly.
Apache Kafka is a distributed streaming platform that can handle large volumes of data in real time. It is used by a wide range of companies, including Netflix, Airbnb, and LinkedIn, to power their mission-critical applications.
However, managing a Kafka cluster can be complex and time-consuming. This is where Docker Compose comes in. Docker Compose is a tool that allows you to define and run multi-container Docker applications with a single command.
Getting started
To get started, you will need to have Docker and Docker Compose installed on your machine. Once you have installed Docker and Docker Compose, you can create a new directory for your Kafka cluster.
Next, you need to create a Docker Compose file. This file will define the different containers that make up your Kafka cluster.
Single Kafka & Single Zookeeper
Here is an example of a Docker Compose file for a Kafka cluster:
services:
zoo1:
image: confluentinc/cp-zookeeper:7.3.2
hostname: zoo1
container_name: zoo1
ports:
- "2181:2181"
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_SERVER_ID: 1
ZOOKEEPER_SERVERS: zoo1:2888:3888
kafka1:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka1
container_name: kafka1
ports:
- "9092:9092"
- "29092:29092"
- "9999:9999"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:19092,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092,DOCKER://host.docker.internal:29092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 1
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
KAFKA_JMX_PORT: 9999
KAFKA_JMX_HOSTNAME: ${DOCKER_HOST_IP:-127.0.0.1}
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
This Docker Compose file defines 2 containers:
- zookeeper: This container runs the Zookeeper service, which is a distributed coordination service that Kafka uses to manage its cluster.
- kafka: This container runs the Kafka broker service.
Multiple Kafka & Single Zookeeper
services:
zoo1:
image: confluentinc/cp-zookeeper:7.3.2
hostname: zoo1
container_name: zoo1
ports:
- "2181:2181"
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_SERVER_ID: 1
ZOOKEEPER_SERVERS: zoo1:2888:3888
kafka1:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka1
container_name: kafka1
ports:
- "9092:9092"
- "29092:29092"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:19092,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092,DOCKER://host.docker.internal:29092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 1
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
kafka2:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka2
container_name: kafka2
ports:
- "9093:9093"
- "29093:29093"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka2:19093,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9093,DOCKER://host.docker.internal:29093
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 2
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
kafka3:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka3
container_name: kafka3
ports:
- "9094:9094"
- "29094:29094"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka3:19094,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9094,DOCKER://host.docker.internal:29094
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 3
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
Multiple Kafka and Multiple Zookeeper
services:
zoo1:
image: confluentinc/cp-zookeeper:7.3.2
hostname: zoo1
container_name: zoo1
ports:
- "2181:2181"
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_SERVER_ID: 1
ZOOKEEPER_SERVERS: zoo1:2888:3888;zoo2:2888:3888;zoo3:2888:3888
zoo2:
image: confluentinc/cp-zookeeper:7.3.2
hostname: zoo2
container_name: zoo2
ports:
- "2182:2182"
environment:
ZOOKEEPER_CLIENT_PORT: 2182
ZOOKEEPER_SERVER_ID: 2
ZOOKEEPER_SERVERS: zoo1:2888:3888;zoo2:2888:3888;zoo3:2888:3888
zoo3:
image: confluentinc/cp-zookeeper:7.3.2
hostname: zoo3
container_name: zoo3
ports:
- "2183:2183"
environment:
ZOOKEEPER_CLIENT_PORT: 2183
ZOOKEEPER_SERVER_ID: 3
ZOOKEEPER_SERVERS: zoo1:2888:3888;zoo2:2888:3888;zoo3:2888:3888
kafka1:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka1
container_name: kafka1
ports:
- "9092:9092"
- "29092:29092"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:19092,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092,DOCKER://host.docker.internal:29092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181,zoo2:2182,zoo3:2183"
KAFKA_BROKER_ID: 1
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
- zoo2
- zoo3
kafka2:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka2
container_name: kafka2
ports:
- "9093:9093"
- "29093:29093"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka2:19093,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9093,DOCKER://host.docker.internal:29093
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181,zoo2:2182,zoo3:2183"
KAFKA_BROKER_ID: 2
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
- zoo2
- zoo3
kafka3:
image: confluentinc/cp-kafka:7.3.2
hostname: kafka3
container_name: kafka3
ports:
- "9094:9094"
- "29094:29094"
environment:
KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka3:19094,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9094,DOCKER://host.docker.internal:29094
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181,zoo2:2182,zoo3:2183"
KAFKA_BROKER_ID: 3
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizer
KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"
depends_on:
- zoo1
- zoo2
- zoo3
Starting the Kafka cluster
Once you have created the Docker Compose file, you can start the Kafka cluster by running the following command:
docker-compose up -d
This command will start the Zookeeper, Kafka, and Kafka UI containers.
Accessing the Kafka cluster
Once the Kafka cluster is up and running, you can access it using the following ports:
- Zookeeper: 2181
- Kafka: 9092
- Kafka UI: 9093
Stopping the Kafka cluster
To stop the Kafka cluster, you can run the following command:
docker-compose down
This command will stop and remove all of the containers in your Kafka cluster.
Conclusion
In this blog post, we have shown you how to effortlessly manage Apache Kafka with Docker Compose. We have provided you with a step-by-step guide on how to create a Kafka cluster using Docker Compose, as well as a YAML file that you can use to get started.
Additional tips
Here are a few additional tips for managing Apache Kafka with Docker Compose:
- You can use the docker-compose ps command to view the status of your Kafka cluster.
- You can use the docker-compose logs command to view the logs of your Kafka cluster.
- You can use the docker-compose scale command to scale up or down your Kafka cluster.
- You can use the docker-compose restart command to restart your Kafka cluster.