Agentic AI represents the next evolution in artificial intelligence, where autonomous agents can reason, plan, and execute complex tasks independently. Deploying these sophisticated AI systems at scale requires robust orchestration platforms, and Kubernetes has emerged as the de facto standard for managing containerized Agentic AI workloads. This comprehensive technical guide explores advanced deployment patterns, optimization strategies, and production-ready implementations for Agentic AI systems on Kubernetes.
Understanding Agentic AI Architecture and Kubernetes Integration
Agentic AI systems differ fundamentally from traditional machine learning models by incorporating decision-making capabilities, memory management, tool usage, and autonomous task execution. These systems require sophisticated orchestration to manage multiple interacting components, dynamic resource allocation, and complex communication patterns.
Core Components of Agentic AI Systems
Agent Runtime Environment:
Agentic AI systems typically consist of multiple interconnected components that must be orchestrated effectively:
- Reasoning Engine: LLM-based decision making and planning
- Memory Systems: Vector databases and episodic memory storage
- Tool Integration: External API and service interactions
- Task Orchestration: Workflow management and execution coordination
- Monitoring and Observability: Real-time performance tracking
# Agentic AI system namespace configuration
apiVersion: v1
kind: Namespace
metadata:
name: agentic-ai
labels:
purpose: ai-agents
security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/enforce: restricted
---
apiVersion: v1
kind: ResourceQuota
metadata:
name: agentic-ai-quota
namespace: agentic-ai
spec:
hard:
requests.cpu: "50"
requests.memory: 200Gi
requests.nvidia.com/gpu: "8"
limits.cpu: "100"
limits.memory: 400Gi
limits.nvidia.com/gpu: "8"
persistentvolumeclaims: "20"
Advanced Agent Deployment Patterns
Multi-Agent System Architecture:
# Agent coordinator deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: agent-coordinator
namespace: agentic-ai
labels:
component: coordinator
tier: control-plane
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
selector:
matchLabels:
app: agent-coordinator
template:
metadata:
labels:
app: agent-coordinator
component: coordinator
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
spec:
serviceAccountName: agent-coordinator
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 1000
containers:
- name: coordinator
image: agentic-ai/coordinator:v2.1.0
ports:
- containerPort: 8080
name: http-metrics
- containerPort: 9090
name: grpc
env:
- name: AGENT_POOL_SIZE
value: "10"
- name: MAX_CONCURRENT_TASKS
value: "50"
- name: REDIS_URL
valueFrom:
secretKeyRef:
name: redis-credentials
key: url
- name: VECTOR_DB_ENDPOINT
valueFrom:
configMapKeyRef:
name: agent-config
key: vector_db_endpoint
resources:
requests:
cpu: 2000m
memory: 4Gi
limits:
cpu: 4000m
memory: 8Gi
readinessProbe:
httpGet:
path: /health/ready
port: 8080
initialDelaySeconds: 10
periodSeconds: 5
livenessProbe:
httpGet:
path: /health/live
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
volumeMounts:
- name: agent-config
mountPath: /etc/agent
readOnly: true
- name: tls-certs
mountPath: /etc/tls
readOnly: true
volumes:
- name: agent-config
configMap:
name: agent-config
- name: tls-certs
secret:
secretName: agent-tls
GPU-Accelerated Agent Workloads
LLM-Powered Agent Deployment:
# GPU-accelerated reasoning agent
apiVersion: apps/v1
kind: Deployment
metadata:
name: reasoning-agent
namespace: agentic-ai
spec:
replicas: 2
selector:
matchLabels:
app: reasoning-agent
template:
metadata:
labels:
app: reasoning-agent
component: reasoning
spec:
nodeSelector:
accelerator: nvidia-tesla-v100
tolerations:
- key: nvidia.com/gpu
operator: Equal
value: "true"
effect: NoSchedule
containers:
- name: reasoning-engine
image: agentic-ai/reasoning-engine:v1.5.0
ports:
- containerPort: 8000
name: inference
env:
- name: MODEL_PATH
value: "/models/llama-2-70b-chat"
- name: CUDA_VISIBLE_DEVICES
value: "0,1"
- name: TENSOR_PARALLEL_SIZE
value: "2"
- name: MAX_NUM_SEQS
value: "128"
- name: GPU_MEMORY_UTILIZATION
value: "0.9"
resources:
requests:
nvidia.com/gpu: 2
cpu: 8000m
memory: 32Gi
limits:
nvidia.com/gpu: 2
cpu: 16000m
memory: 64Gi
volumeMounts:
- name: model-storage
mountPath: /models
readOnly: true
- name: cache-volume
mountPath: /cache
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-pvc
- name: cache-volume
emptyDir:
sizeLimit: 50Gi
---
apiVersion: v1
kind: Service
metadata:
name: reasoning-agent-service
namespace: agentic-ai
spec:
selector:
app: reasoning-agent
ports:
- port: 8000
targetPort: 8000
name: inference
type: ClusterIP
Vector Database and Memory Management
High-Performance Vector Database Deployment:
# Qdrant vector database for agent memory
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: qdrant-cluster
namespace: agentic-ai
spec:
serviceName: qdrant-headless
replicas: 3
selector:
matchLabels:
app: qdrant
template:
metadata:
labels:
app: qdrant
spec:
containers:
- name: qdrant
image: qdrant/qdrant:v1.7.0
ports:
- containerPort: 6333
name: http
- containerPort: 6334
name: grpc
env:
- name: QDRANT__CLUSTER__ENABLED
value: "true"
- name: QDRANT__CLUSTER__P2P__PORT
value: "6335"
- name: QDRANT__STORAGE__STORAGE_PATH
value: "/qdrant/storage"
resources:
requests:
cpu: 2000m
memory: 8Gi
limits:
cpu: 4000m
memory: 16Gi
volumeMounts:
- name: qdrant-storage
mountPath: /qdrant/storage
readinessProbe:
httpGet:
path: /readiness
port: 6333
initialDelaySeconds: 10
periodSeconds: 5
volumeClaimTemplates:
- metadata:
name: qdrant-storage
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: fast-ssd
resources:
requests:
storage: 100Gi
Redis-Based Agent State Management:
# Redis cluster for agent state and caching
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: redis-cluster
namespace: agentic-ai
spec:
serviceName: redis-headless
replicas: 6
selector:
matchLabels:
app: redis-cluster
template:
metadata:
labels:
app: redis-cluster
spec:
containers:
- name: redis
image: redis:7.2-alpine
command:
- redis-server
- /etc/redis/redis.conf
- --cluster-enabled
- "yes"
- --cluster-config-file
- /data/nodes.conf
- --cluster-node-timeout
- "5000"
- --appendonly
- "yes"
ports:
- containerPort: 6379
name: client
- containerPort: 16379
name: gossip
resources:
requests:
cpu: 1000m
memory: 2Gi
limits:
cpu: 2000m
memory: 4Gi
volumeMounts:
- name: redis-data
mountPath: /data
- name: redis-config
mountPath: /etc/redis
volumes:
- name: redis-config
configMap:
name: redis-config
volumeClaimTemplates:
- metadata:
name: redis-data
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: fast-ssd
resources:
requests:
storage: 20Gi
Advanced Agent Communication Patterns
Event-Driven Agent Communication:
# Apache Kafka for agent event streaming
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: kafka-cluster
namespace: agentic-ai
spec:
serviceName: kafka-headless
replicas: 3
selector:
matchLabels:
app: kafka
template:
metadata:
labels:
app: kafka
spec:
containers:
- name: kafka
image: confluentinc/cp-kafka:7.4.0
ports:
- containerPort: 9092
name: kafka
- containerPort: 9093
name: kafka-external
env:
- name: KAFKA_BROKER_ID
valueFrom:
fieldRef:
fieldPath: metadata.annotations['kafka.apache.org/broker-id']
- name: KAFKA_ZOOKEEPER_CONNECT
value: "zookeeper-service:2181"
- name: KAFKA_LISTENERS
value: "INTERNAL://0.0.0.0:9092,EXTERNAL://0.0.0.0:9093"
- name: KAFKA_ADVERTISED_LISTENERS
value: "INTERNAL://$(POD_NAME).kafka-headless:9092,EXTERNAL://$(POD_IP):9093"
- name: KAFKA_LISTENER_SECURITY_PROTOCOL_MAP
value: "INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT"
- name: KAFKA_INTER_BROKER_LISTENER_NAME
value: "INTERNAL"
- name: KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR
value: "3"
- name: KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR
value: "3"
- name: KAFKA_LOG_RETENTION_HOURS
value: "168"
- name: KAFKA_LOG_SEGMENT_BYTES
value: "1073741824"
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
resources:
requests:
cpu: 1000m
memory: 2Gi
limits:
cpu: 2000m
memory: 4Gi
volumeMounts:
- name: kafka-data
mountPath: /var/lib/kafka/data
volumeClaimTemplates:
- metadata:
name: kafka-data
spec:
accessModes: ["ReadWriteOnce"]
storageClassName: fast-ssd
resources:
requests:
storage: 50Gi
Agent Workflow Orchestration with Argo Workflows
Complex Agent Task Pipeline:
# Argo Workflow for multi-step agent tasks
apiVersion: argoproj.io/v1alpha1
kind: WorkflowTemplate
metadata:
name: agent-task-pipeline
namespace: agentic-ai
spec:
entrypoint: agent-workflow
serviceAccountName: argo-workflow
templates:
- name: agent-workflow
dag:
tasks:
- name: data-ingestion
template: data-ingest
- name: reasoning-phase
template: reasoning-agent
dependencies: [data-ingestion]
arguments:
parameters:
- name: input-data
value: "{{tasks.data-ingestion.outputs.parameters.processed-data}}"
- name: tool-execution
template: tool-agent
dependencies: [reasoning-phase]
arguments:
parameters:
- name: action-plan
value: "{{tasks.reasoning-phase.outputs.parameters.action-plan}}"
- name: result-synthesis
template: synthesis-agent
dependencies: [tool-execution]
arguments:
parameters:
- name: execution-results
value: "{{tasks.tool-execution.outputs.parameters.results}}"
- name: data-ingest
container:
image: agentic-ai/data-processor:v1.0.0
command: [python, -c]
args: ["import data_processor; result = data_processor.process(); print(f'::output::{result}')"]
resources:
requests:
cpu: 500m
memory: 1Gi
limits:
cpu: 1000m
memory: 2Gi
outputs:
parameters:
- name: processed-data
valueFrom:
path: /tmp/processed_data.json
- name: reasoning-agent
inputs:
parameters:
- name: input-data
container:
image: agentic-ai/reasoning-agent:v2.0.0
command: [python, -c]
args: ["import reasoning; plan = reasoning.create_plan('{{inputs.parameters.input-data}}'); print(f'::output::{plan}')"]
resources:
requests:
nvidia.com/gpu: 1
cpu: 2000m
memory: 8Gi
limits:
nvidia.com/gpu: 1
cpu: 4000m
memory: 16Gi
outputs:
parameters:
- name: action-plan
valueFrom:
path: /tmp/action_plan.json
- name: tool-agent
inputs:
parameters:
- name: action-plan
container:
image: agentic-ai/tool-executor:v1.5.0
command: [python, -c]
args: ["import tool_executor; results = tool_executor.execute('{{inputs.parameters.action-plan}}'); print(f'::output::{results}')"]
resources:
requests:
cpu: 1000m
memory: 2Gi
limits:
cpu: 2000m
memory: 4Gi
outputs:
parameters:
- name: results
valueFrom:
path: /tmp/execution_results.json
- name: synthesis-agent
inputs:
parameters:
- name: execution-results
container:
image: agentic-ai/synthesizer:v1.0.0
command: [python, -c]
args: ["import synthesizer; final = synthesizer.synthesize('{{inputs.parameters.execution-results}}'); print(f'Final Result: {final}')"]
resources:
requests:
cpu: 500m
memory: 1Gi
limits:
cpu: 1000m
memory: 2Gi
Auto-Scaling and Resource Optimization
Horizontal Pod Autoscaler for AI Agents:
# Custom metrics-based HPA for reasoning agents
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: reasoning-agent-hpa
namespace: agentic-ai
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: reasoning-agent
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: nvidia.com/gpu
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: inference_queue_length
target:
type: AverageValue
averageValue: "30"
- type: Pods
pods:
metric:
name: response_time_p95
target:
type: AverageValue
averageValue: "2000m"
behavior:
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 50
periodSeconds: 60
- type: Pods
value: 2
periodSeconds: 60
selectPolicy: Max
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
selectPolicy: Min
Vertical Pod Autoscaler for Memory-Intensive Workloads:
# VPA for vector database optimization
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: qdrant-vpa
namespace: agentic-ai
spec:
targetRef:
apiVersion: apps/v1
kind: StatefulSet
name: qdrant-cluster
updatePolicy:
updateMode: "Auto"
resourcePolicy:
containerPolicies:
- containerName: qdrant
minAllowed:
cpu: 1000m
memory: 4Gi
maxAllowed:
cpu: 8000m
memory: 32Gi
controlledResources: ["cpu", "memory"]
controlledValues: RequestsAndLimits
Advanced Security and RBAC for AI Workloads
Comprehensive RBAC Configuration:
# Service account for agent operations
apiVersion: v1
kind: ServiceAccount
metadata:
name: agent-operator
namespace: agentic-ai
annotations:
eks.amazonaws.com/role-arn: arn:aws:iam::ACCOUNT:role/agent-operator-role
---
# Role for agent management
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: agentic-ai
name: agent-manager
rules:
- apiGroups: [""]
resources: ["pods", "services", "configmaps", "secrets"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
- apiGroups: ["apps"]
resources: ["deployments", "statefulsets", "daemonsets"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
- apiGroups: ["metrics.k8s.io"]
resources: ["pods", "nodes"]
verbs: ["get", "list"]
---
# Role binding
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: agent-manager-binding
namespace: agentic-ai
subjects:
- kind: ServiceAccount
name: agent-operator
namespace: agentic-ai
roleRef:
kind: Role
name: agent-manager
apiGroup: rbac.authorization.k8s.io
Pod Security Standards and Network Policies:
# Network policy for agent isolation
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: agent-network-policy
namespace: agentic-ai
spec:
podSelector:
matchLabels:
tier: agent
policyTypes:
- Ingress
- Egress
ingress:
- from:
- namespaceSelector:
matchLabels:
name: agentic-ai
- podSelector:
matchLabels:
role: coordinator
ports:
- protocol: TCP
port: 8080
- protocol: TCP
port: 9090
egress:
- to:
- namespaceSelector:
matchLabels:
name: agentic-ai
ports:
- protocol: TCP
port: 6379 # Redis
- protocol: TCP
port: 6333 # Qdrant
- protocol: TCP
port: 9092 # Kafka
- to: [] # Allow external API calls
ports:
- protocol: TCP
port: 443
- protocol: TCP
port: 80
Monitoring and Observability for Agent Systems
Prometheus Monitoring Configuration:
# ServiceMonitor for agent metrics
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: agent-metrics
namespace: agentic-ai
labels:
app: agentic-ai
spec:
selector:
matchLabels:
monitoring: enabled
endpoints:
- port: metrics
interval: 30s
path: /metrics
honorLabels: true
- port: health
interval: 60s
path: /health/metrics
---
# PrometheusRule for agent alerts
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: agent-alerts
namespace: agentic-ai
spec:
groups:
- name: agent.rules
interval: 30s
rules:
- alert: AgentHighResponseTime
expr: histogram_quantile(0.95, rate(agent_request_duration_seconds_bucket[5m])) > 2
for: 2m
labels:
severity: warning
annotations:
summary: "Agent response time is high"
description: "Agent {{ $labels.agent_id }} has 95th percentile response time of {{ $value }}s"
- alert: AgentGPUUtilizationHigh
expr: nvidia_gpu_utilization > 90
for: 5m
labels:
severity: critical
annotations:
summary: "GPU utilization is critically high"
description: "GPU utilization on {{ $labels.instance }} is {{ $value }}%"
- alert: VectorDatabaseConnectionFailed
expr: up{job="qdrant"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Vector database is down"
description: "Qdrant instance {{ $labels.instance }} is unreachable"
Custom Metrics for Agent Performance:
# ConfigMap for agent metrics configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: agent-metrics-config
namespace: agentic-ai
data:
metrics.yaml: |
metrics:
- name: agent_task_completion_time
type: histogram
description: Time taken to complete agent tasks
buckets: [0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 30.0, 60.0]
- name: agent_memory_usage_bytes
type: gauge
description: Current memory usage of agent processes
- name: agent_inference_requests_total
type: counter
description: Total number of inference requests processed
labels: [agent_type, model_version]
- name: agent_tool_execution_duration
type: histogram
description: Time taken for tool execution
buckets: [0.01, 0.1, 0.5, 1.0, 5.0, 10.0]
- name: agent_queue_depth
type: gauge
description: Current depth of agent task queue
- name: vector_search_latency
type: histogram
description: Vector similarity search latency
buckets: [0.001, 0.01, 0.1, 0.5, 1.0]
Advanced Agent Deployment Strategies
Canary Deployment for Agent Updates:
# Flagger canary analysis for agent deployments
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: reasoning-agent-canary
namespace: agentic-ai
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: reasoning-agent
progressDeadlineSeconds: 60
service:
port: 8000
targetPort: 8000
gateways:
- reasoning-agent-gateway
hosts:
- reasoning-agent.local
analysis:
interval: 1m
threshold: 5
maxWeight: 50
stepWeight: 10
metrics:
- name: request-success-rate
thresholdRange:
min: 99
interval: 1m
- name: request-duration
thresholdRange:
max: 500
interval: 1m
- name: gpu-utilization
thresholdRange:
max: 85
interval: 1m
webhooks:
- name: load-test
url: http://load-tester.agentic-ai/
timeout: 5s
metadata:
cmd: "hey -z 1m -q 10 -c 2 http://reasoning-agent-canary.agentic-ai:8000/health"
Blue-Green Deployment with Agent State Migration:
# Agent state migration job
apiVersion: batch/v1
kind: Job
metadata:
name: agent-state-migration
namespace: agentic-ai
spec:
template:
spec:
serviceAccountName: agent-operator
containers:
- name: state-migrator
image: agentic-ai/state-migrator:v1.0.0
command: ["/bin/sh", "-c"]
args:
- |
echo "Starting agent state migration..."
# Export current agent states
kubectl exec -n agentic-ai sts/redis-cluster-0 -- redis-cli --cluster call 127.0.0.1:6379 BGSAVE
# Wait for backup completion
while [ "$(kubectl exec -n agentic-ai sts/redis-cluster-0 -- redis-cli LASTSAVE)" == "$(kubectl exec -n agentic-ai sts/redis-cluster-0 -- redis-cli LASTSAVE)" ]; do
sleep 5
done
# Create blue environment
kubectl apply -f /manifests/blue-deployment.yaml
# Wait for blue environment readiness
kubectl rollout status deployment/reasoning-agent-blue -n agentic-ai
# Migrate vector embeddings
python /scripts/migrate_vectors.py --source qdrant-green --target qdrant-blue
# Switch traffic to blue
kubectl patch service reasoning-agent-service -p '{"spec":{"selector":{"version":"blue"}}}'
echo "Migration completed successfully"
volumeMounts:
- name: migration-scripts
mountPath: /scripts
- name: manifests
mountPath: /manifests
env:
- name: KUBECONFIG
value: /var/run/secrets/kubernetes.io/serviceaccount
volumes:
- name: migration-scripts
configMap:
name: migration-scripts
- name: manifests
configMap:
name: blue-green-manifests
restartPolicy: OnFailure
backoffLimit: 3
Performance Optimization and Resource Management
GPU Memory Optimization:
# Multi-instance GPU configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: mig-config
namespace: agentic-ai
data:
mig.conf: |
version: v1
mig-configs:
all-1g.5gb:
- devices: all
mig-enabled: true
mig-devices:
1g.5gb: 7
all-2g.10gb:
- devices: all
mig-enabled: true
mig-devices:
2g.10gb: 3
all-3g.20gb:
- devices: all
mig-enabled: true
mig-devices:
3g.20gb: 2
---
# MIG-enabled agent deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: mig-reasoning-agent
namespace: agentic-ai
spec:
replicas: 7
selector:
matchLabels:
app: mig-reasoning-agent
template:
metadata:
labels:
app: mig-reasoning-agent
spec:
nodeSelector:
nvidia.com/mig.config: all-1g.5gb
containers:
- name: reasoning-engine
image: agentic-ai/reasoning-engine:v1.5.0-mig
resources:
requests:
nvidia.com/mig-1g.5gb: 1
cpu: 2000m
memory: 8Gi
limits:
nvidia.com/mig-1g.5gb: 1
cpu: 4000m
memory: 16Gi
env:
- name: CUDA_MPS_PERCENTAGE
value: "100"
- name: MODEL_PARALLEL_SIZE
value: "1"
Intelligent Agent Scheduling:
# Priority class for critical agents
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
name: critical-agent
value: 1000
globalDefault: false
description: "Priority class for critical AI agents"
---
# Scheduler configuration for agent placement
apiVersion: v1
kind: ConfigMap
metadata:
name: scheduler-config
namespace: kube-system
data:
config.yaml: |
apiVersion: kubescheduler.config.k8s.io/v1beta3
kind: KubeSchedulerConfiguration
profiles:
- schedulerName: agent-scheduler
plugins:
filter:
enabled:
- name: NodeResourcesFit
- name: NodeAffinity
score:
enabled:
- name: NodeResourcesFit
weight: 5
- name: NodeAffinity
weight: 3
- name: InterPodAffinity
weight: 2
pluginConfig:
- name: NodeResourcesFit
args:
scoringStrategy:
type: LeastAllocated
requestedToCapacityRatio:
shape:
- utilization: 0
score: 10
- utilization: 100
score: 0
resources:
- name: nvidia.com/gpu
weight: 100
- name: cpu
weight: 1
- name: memory
weight: 1
Production Best Practices and Troubleshooting
Health Check and Circuit Breaker Implementation:
# Agent health monitoring deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: agent-health-monitor
namespace: agentic-ai
spec:
replicas: 1
selector:
matchLabels:
app: agent-health-monitor
template:
metadata:
labels:
app: agent-health-monitor
spec:
containers:
- name: health-monitor
image: agentic-ai/health-monitor:v1.0.0
ports:
- containerPort: 8080
env:
- name: AGENT_ENDPOINTS
value: "reasoning-agent:8000,tool-agent:8001,synthesis-agent:8002"
- name: CHECK_INTERVAL
value: "30s"
- name: CIRCUIT_BREAKER_THRESHOLD
value: "5"
- name: CIRCUIT_BREAKER_TIMEOUT
value: "60s"
resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 200m
memory: 256Mi
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 10
periodSeconds: 30
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
Comprehensive Logging and Audit Trail:
# Fluent Bit configuration for agent logs
apiVersion: v1
kind: ConfigMap
metadata:
name: fluent-bit-config
namespace: agentic-ai
data:
fluent-bit.conf: |
[SERVICE]
Flush 1
Log_Level info
Daemon off
Parsers_File parsers.conf
HTTP_Server On
HTTP_Listen 0.0.0.0
HTTP_Port 2020
[INPUT]
Name tail
Path /var/log/containers/*agentic-ai*.log
Parser cri
Tag agent.*
Refresh_Interval 5
Mem_Buf_Limit 50MB
Skip_Long_Lines On
[FILTER]
Name kubernetes
Match agent.*
Kube_URL https://kubernetes.default.svc:443
Kube_CA_File /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
Kube_Token_File /var/run/secrets/kubernetes.io/serviceaccount/token
Kube_Tag_Prefix agent.var.log.containers.
Merge_Log On
Keep_Log Off
K8S-Logging.Parser On
K8S-Logging.Exclude On
Annotations Off
Labels On
[FILTER]
Name grep
Match agent.*
Regex log (ERROR|WARN|INFO|DEBUG)
[OUTPUT]
Name es
Match agent.*
Host elasticsearch.logging.svc.cluster.local
Port 9200
Index agent-logs
Type _doc
Logstash_Format On
Logstash_Prefix agent
Time_Key @timestamp
Future-Proofing and Ecosystem Integration
GitOps Integration with ArgoCD:
# ArgoCD application for agent deployments
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: agentic-ai-platform
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/company/agentic-ai-k8s
targetRevision: HEAD
path: manifests/
helm:
valueFiles:
- values.yaml
- values-production.yaml
destination:
server: https://kubernetes.default.svc
namespace: agentic-ai
syncPolicy:
automated:
prune: true
selfHeal: true
allowEmpty: false
syncOptions:
- CreateNamespace=true
- PruneLast=true
retry:
limit: 5
backoff:
duration: 5s
factor: 2
maxDuration: 3m
revisionHistoryLimit: 10
The deployment and orchestration of Agentic AI systems on Kubernetes represents a significant advancement in autonomous artificial intelligence infrastructure. By leveraging Kubernetes’ powerful orchestration capabilities, organizations can build resilient, scalable, and intelligent systems that adapt to changing workloads while maintaining high availability and performance.
The key to successful Agentic AI deployment lies in understanding the unique requirements of autonomous agents, implementing robust monitoring and observability, and designing for horizontal scalability. As these systems continue to evolve, Kubernetes provides the foundation for managing increasingly sophisticated AI workloads that will define the next generation of intelligent applications.
Through careful implementation of the patterns and practices outlined in this guide, teams can build production-ready Agentic AI systems that harness the full potential of autonomous artificial intelligence while maintaining operational excellence and security standards required for enterprise environments.