Visualizing Time Series Data directly over IoT Edge device using Dockerized RedisTimeSeries & Grafana

Application developers look to Redis and RedisTimeSeries to work with real-time internet of things (IoT) sensor data. RedisTimeseries is a Redis module to enhance your experience managing time-series data with Redis. It simplifies the use of Redis for time-series use cases such as internet of things (IoT) data, stock prices, and telemetry. With RedisTimeSeries, you can ingest and query millions of samples and events at the speed of Redis. Advanced tooling such as downsampling and aggregation ensures a small memory footprint without impacting performance. Use a variety of queries for visualization and monitoring with built-in connectors to popular monitoring tools like Grafana, Prometheus, and Telegraf.

Introducing Redis Data Source for Grafana

The Redis Data Source for Grafana is a plug-in that allows users to connect to the Redis database and build dashboards in Grafana to easily monitor Redis and application data. It provides an out-of-the-box predefined dashboard but also lets you build customized dashboards tuned to your specific needs.

I published a blog for Redis Labs where I showcased how to fetch sensor data and push it to Redis Enterprise Cloud. In this tutorial, I will show how you can use a python script to fetch IoT sensor data, push it to dockerized RedisTimeSeries and then plot it over Grafana ~ all using Docker container running on the IoT device.

Let’s get started –

Hardware requirements:

Software requirements:

You can run RedisTimeSeries directly over an IoT Edge device. Follow the below steps to build RedisTimeSeries Docker Image over Jetson Nano:

Verifying Docker version

SSH to 70.167.220.160 and install Docker

pico@pico1:~$ docker version
Client: Docker Engine - Community
 Version:           20.10.3
 API version:       1.41
 Go version:        go1.13.15
 Git commit:        48d30b5
 Built:             Fri Jan 29 14:33:34 2021
 OS/Arch:           linux/arm64
 Context:           default
 Experimental:      true

Server: Docker Engine - Community
 Engine:
  Version:          20.10.6
  API version:      1.41 (minimum version 1.12)
  Go version:       go1.13.15
  Git commit:       8728dd2
  Built:            Fri Apr  9 22:43:42 2021
  OS/Arch:          linux/arm64
  Experimental:     false
 containerd:
  Version:          1.4.3
  GitCommit:        269548fa27e0089a8b8278fc4fc781d7f65a939b
 nvidia:
  Version:          1.0.0-rc92
  GitCommit:        ff819c7e9184c13b7c2607fe6c30ae19403a7aff
 docker-init:
  Version:          0.19.0
  GitCommit:        de40ad0

Verifying if Sensor is detected

 i2cdetect -r -y 1
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:          -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- --

Building Docker Image for RedisTimeSeries for Jetson Nano

git clone --recursive https://github.com/RedisTimeSeries/RedisTimeSeries.git
cd RedisTimeSeries.git
docker build -t ajeetraina/redistimeseries-jetson . -f Dockerfile.jetson.edge

Running RedisTimeSeries

docker run -dit -p 6379:6379 ajeetraina/redistimeseries-jetson

Verifying if RedisTimeSeries Module is loaded

redis-cli
127.0.0.1:6379> info modules
# Modules
module:name=timeseries,ver=999999,api=1,filters=0,usedby=[],using=[],options=[]
127.0.0.1:6379>

Clone the repository

$ git clone https://github.com/redis-developer/redis-datasets
$ cd redis-datasets/redistimeseries/realtime-sensor-jetson

Running Sensorload Script

sudo python3 sensorloader2.py --host localhost --port 6379

Running Grafana on Jetson Nano

docker run -d -e "GF_INSTALL_PLUGINS=redis-app" -p 3000:3000 grafana/grafana

There you go..

Point your browser to https://<IP_ADDRESS>:3000. Use “admin” as username and password to log in to the Grafana dashboard.

Click the Data Sources option on the left side of the Grafana dashboard to add a data source.

Under the Add data source option, search for Redis and the Redis data source will appear as shown below:

Supply the name, Redis Enterprise Cloud database endpoint, and password, then click Save & Test.

Click Dashboards to import Redis and Redis Streaming. Click Import for both these options.

Click on Redis to see a fancy Grafana dashboard that shows the Redis database information:

Finally, let’s create a sensor dashboard that shows temperature, pressure, and humidity. To start with temperature,  first click on + on the left navigation window. Under Create option, Select Dashboard and click on the Add new panel button.

A new window will open showing the Query section. Select SensorT from the drop-down menu, choose RedisTimeSeries as type, TS.GET as command and ts”temperature as key.

Choose TS.GET as a command.

Type ts”temperature as the key.

Click Run followed by Save, as shown below:

Now you can save the dashboard by your preferred name:

Click Save. This will open up a sensor dashboard. You can click on Panel Title and select Edit.

Type Temperature and choose Gauge under Visualization.

Click Apply and you should be able to see the temperature dashboard as shown here:

Follow the same process for pressure (ts:pressure) and humidity (ts:humidity), and add them to the dashboard. You should be able to see the complete dashboard readings for temperature, humidity, and pressure. Looks amazing. Isn’t it?

References